

高于晟是清華大學物理所吳國安教授的博士班學生, 同時也是本中心產業應用組吳品鈞博士的共同指導學生。高 同學於 2019 年成為本中心用戶,曾於 2023 年歐洲材料學 會秋季會議獲頒青年學者獎,同年亦於本中心第二十九屆用 戶年會中榮獲材料科學組「台灣之光」獎。

您是本中心 2023 年用戶年會材料科學組「台灣之光」 獎獲獎者,請您分享當時獲獎的研究內容。

當時我的報告內容主要是關於我在博班期間研究的特殊材料,一種具有鐵電性質的掺鋯二氧化鉿薄膜 (Hafnium-Zirconium Oxide, HZO)。我們利用 TLS 07A 光束線分別進行 X 光散射以及吸收光譜的實驗,從而分析不同製程條件下 HZO 的晶相組成、晶粒大小、環境配位數以及殘餘應變等性質。最後我們於 2022 年整理並歸納出 HZO 晶相組成 - 殘餘應變的通用關聯特性 (universal phase-strain relation),此一項發現最近已陸續被 NaMLab 等國際知名研究機構成功驗證。很幸運獲得評審委員的肯定與青睞,希望我們的努力能為這個領域帶來振奮人心的研究方向。

您在中心進行實驗時,是否有遭遇過什麼困難? 您如何解決?

我在博士班時其中一項研究工作包含協助吳品鈞博士設計並建造一套臨場監控式的快速升溫退火系統 (in-situ Rapid Thermal Annealing, RTA),其中快速升溫退火技術常被歸類於半導體四大模組製程中的擴散 (Diffusion) 製程,

其對於熱氧化層 (thermal oxide) 的成長、材料的結晶 (crystallization) 與再結晶 (recrystallization) 以及離子佈植的活化 (dopant activation) 有著不可或缺的重要性。相較於傳統的爐管退火 (furnace anneal),由於 RTA 能大幅微縮加熱時間,因此對半導體製程熱預算 (thermal budget) 的降低以及製程生產效率 (wafer per hour) 的提升皆有顯著的優勢。我們所設計的 in-situ RTA 系統搭配同步輻射 X 光散射技術,可觀察材料在退火過程中的晶相組成、晶粒大小以及殘餘應力的即時變化,期許未來能協助產學界更加釐清及優化 RTA 製程。由於中心過去沒有類似的設備,加上國內具有相關技術的廠商較少,因此我們前後共耗費約四年的時間,直到去年六月才完成。而能夠順利克服種種困難並完成 in-situ RTA 系統,主要是歸功於國輻中心的研究人員以及眾多合作廠商的幫忙。

您對同步輻射中心有什麼期待嗎?對於有意想進入同 步輻射領域的學生是否有什麼建議?

希望中心能夠更全面性地栽培對於同步輻射有興趣的人才,並鼓勵這些人才與業界接觸及推廣同步輻射技術,促使更多產學合作的機會,期許有朝一日中心能成為如同台積電一樣家喻戶曉的護國神山。對於新進學生的建議是努力將學校教的基礎物理、近代物理以及材料分析知識的根基扎穩,並且把握機會參與中心舉辦的課程及會議,以及多與中心的研究人員進行學術交流。

發 行 人 / 徐嘉鴻

總編輯/王俊杰

編輯委員/康敦彥 王嘉興 林彥谷 鄭澄懋 劉振霖

鍾廷翊 鄧碧雲 蘇慧容

執行編輯 / 李宛萍 姜凱文

國家同步輻射研究中心 版權所有 National Synchrotron Radiation Research Center 300092 新竹市東區新安路101號 TEL: +886-3-578-0281 FAX: +886-3-578-9816 https://www.nsrrc.org.tw